NEET MOCK TEST-02

Time : 3.00Hrs

200 MCQs PATTERN

Max.Marks.720

INSTRUCTIONS

- 1. This test will be a 3 hours Test, Maximum Marks 720M.
- 2. This test consists of Physics, Chemistry, Botany and Zoology questions with equal weightage of 180 marks.
- 3. Each question is of <mark>4 m</mark>arks.

4. There are four parts in the question paper, consisting Part-I Physics (Q.no.1 to 50), Part-II Chemistry (Q.no.51 to 100), Part-III Botany (Q. no. 101 to 150) and Part-IV Zoology (Q. no.151 to 200). Each part is divided into two Sections, Section A consists of 35 multiple choice questions & Section-B consists of 15 Multiple choice questions, out of these 15 questions candidates can choose to attempt any 10 questions.

5. There will be only one correct choice in the given four choices for each question. For each question <u>4 marks will be awarded for correct choice</u>, <u>1 mark will be deducted</u> for incorrect choice and zero mark will be awarded for unattempted question.

6. Any textual, printed or written material, mobile phones, calculator etc. is not allowed for the students appearing for the test.

7. All calculations / written work should be done in the rough sheet provided.

	Syllabus
Physics	: CLASS XI & XII
Chemistry	: CLASS XI & XII
Biology	: CLASS XI & XII
89794	I146 🍈 www.meritroot.com 🔀 info@meritroot.com

meritroo STRONG ROOTS CREATE MERIT PART-1 : PHYSICS : SECTION-A Two towers A and B each of height 20 m are separated by a distance 200m. A body thrown 1. horizontally from the tower A with a velocity 20m/s towards the tower B hits the ground at a point P. Similar body projected horizontally from the tower B towards A with same velocity hits the ground at Q. The uniform velocity with which a truck can move from P to Q in 4 seconds is $(g = 10m/s^2)$ (4) 30m/s(1)5m/s(2) 20 m/s(3) 15m/s2. The rms value of emf given by $(3\sin \omega t + 4\cos \omega t)V$ is $(1)\frac{5}{\sqrt{2}}V$ $(2)5\sqrt{2}V$ (3) 5 V (4) 7 V A convex mirror has a focal length 'f'. A real object is placed at a distance 'f' in front of it from the 3. pole produce s an image at 1) infinity 2) f' 3) f/24) 2f A circular coil of wire of radius r has 600 turns and self inductance 108 mH. The self inductance of a 4. coil with same radius and 500 turns is (1) 108 mH (2)75 mH(3) 90 mH (4) 190 mH 5. A)When a ball is dropped on to the ground from certain height, it comes to rest after few bounces, loosing all of its energy. It is an example of the violation of conservation of energy. B) In uniform circular motion, the acceleration of the body is constant. (1) A alone is true (2) B along is true (3) Both A and B are true (4) Both A and B are false The current through the cell in the following network is (Diodes are ideal) 6. D_1 5Ω ₹30 (1) 1 A (3) 6 A (2) 2 A (4) 4 A 7. A projectile of mass m has velocities 3m/s and 4m/s at two points during its flight in the uniform gravitational field of the earth. If these two velocities are perpendicular to each other, then the velocity of the projectile at the highest point of its path is (1) 0.6 m/s(2) 0.4 m/s(3)2.4 m/s(4)1.8 m/sThe amplitude of damped oscillator becomes half in one minute. The amplitude after 3 minutes will 8. be $\frac{1}{-}$ times the original. Then is x (3) 12(4) 6(1) 8(2)4An electron moving with a velocity $V_1 = \hat{i} m / s$ at a point in a magnetic field experiences a force 9. $\overline{F} = (-e \hat{j})$ Newton where 'e' is the charge of the electron. If the electron moves with a velocity $\overline{V_2} = 2\hat{k}m/s$ at the same point, the force experienced by it is (1) + e k Newton (2) - e k Newton (3) Zero (4) e i Newton 2 8979411146 www.meritroot.com \sim info@meritroot.com

meritroc STRONG ROOTS CREATE MERIT 10. Two particles P and Q each of mass 3m lie on X axis at points (-a, 0) and (a, 0) respectively at rest. A third particle R of mass 2m initially at the origin moves towards the particle Q. If all the collisions are elastic and head on, then the total number of collisions in the system is (1)5(2)4(3)3(4) 211. A potentiometer wire has uniform potential gradient. The specific resistance of the material of the wire is 10^{-7} ohm - m and the current passing through it is 0.1 amp. If the cross – sectional area of the wire is $10^{-6} m^2$, the potential gradient of the wire is $(1)10^{-4}V/m$ (2) $10^{-2}V/m$ (3) $10^{-6}V/m$ (4) $10^{-8}V/m$ If $F = \frac{v}{c \ell n(xb)}$, then (F, v and x denote force, velocity and distance respectively.) 12. (1) the dimension of c are [MT] (2) the dimension of x must be same as $\frac{v}{ch}$ (3) the dimension of $\frac{v}{c}$ can never be same as F (4) the dimension of b are L^{-1} 13. Escape velocity of a body at the equator is v. The escape velocity of the body at the poles, if the value of acceleration due to gravity at the equator is $\frac{1}{3}$ of the value at the poles, is (Average radius of the earth is R) (3) $\sqrt{3}v$ (4) $\frac{v}{\sqrt{3}}$ (2) $\sqrt{2}v$ (1)vThe emf and internal resistance of a single battery that can replace the combination below is 14. $\Box_{16V} \uparrow \Omega^{-}$ (3) $10V, 2\Omega$ (1) $13V, 2\Omega$ (2) $4V, 2\Omega$ (4) $19V, 2\Omega$ A sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass 15. of each molecule is m. If K is the Boltzmann constant, then the density of the gas is (3) $d = \frac{m}{PKT}$ (4) $d = \frac{Km}{PT}$ (1) $d = \frac{Pm}{KT}$ $(2) d = \frac{PT}{Km}$ 16. Sensitivity of potentiometer can be increased by a) increasing series resistance in the primary circuit b) decreasing the length of potentiometer wire c) using potentiometer a wire of high temperature coefficient of resistance d) increasing the length of the wire 1) a and c are correct 2) b and d are correct 3) b and c are correct 4) a and d are correct

www.meritroot.com

info@meritroot.com

8979411146

- 27. The area of hysteresis loop of a material is equivalent to 250 joule. When 10 kg material is magnetized by an alternating field of 50 Hz, then energy lost in one hour will be, if the density of material is $7.5 \text{ gm}/\text{cm}^3$
- (1) $6 \times 10^4 J$ (2) $4 \times 10^3 J$ (3) $3 \times 10^2 J$ (4) $2 \times 10^4 J$ 28. A block of mass 5 kg is moving horizontally at a speed of 1.5 m/s. A perpendicular force of 5 N acts on it for 4 sec. What will be the distance of the block from the point where the force started acting? (1) 10 m (2) 8 m (3) 6 m (4) 2 m
- 29. Angle of a prism is 'A' and its one surface is silvered. Light rays falling at an angle of incidence 2A on first surface return back through the same path after suffering reflection at second silvered surface. Refractive index of the material of the prism is

 (1) 2 sin A
 (2) 2 cos A
 (3) 1/2cosA
 (4) 2 tan A
- 30. A beam of 10.6 eV photons of intensity $2.0W / m^2$ falls on a platinum surface of area $1.0 \times 10^{-4} m^2$ and work function 5.6 eV. If 0.53 % of the incident photons eject photo electrons, then find the number of photoelectrons emitter per second and maximum energy of ejected electrons (in eV) are (1) 6.25×10^{11} , 5eV (2) 6.25×10^8 , 5eV (3) 6.25×10^{11} , 0.5eV (4) 0, 5eV
- 31. In Young's experiment interference bands are produced on the screen placed at 1.5 m from the two slits 0.15 mm apart and illuminated by light of wavelength 6000 Å. If the screen is now taken away from the slit by 50 cm, the change in the fringe width will be (1) $2 \times 10^{-4} m$ (2) $2 \times 10^{-3} m$ (3) $6 \times 10^{-7} m$ (4) $1.2 \times 10^{-4} m$
- 32. A radioactive material decreases by simultaneous emissions of two particles with half lives 1620 and 810 years. The time after which ¼ of the material remained is (1) 1080 years (2) 2000 years (3) 1500 years (4) 1200 years
- 33. If λ_1 and λ_2 are the wavelengths of the first members of the Lyman and Paschen series, respectively, then $\lambda_1 : \lambda_2$ is
- (1) 1 : 3 (2) 1 : 30 (3) 7 : 50 (4) 7 : 108 34. A flood light is covered with a filter that transmits red light. The electric field of the emerging beam is represented by a sinusoidal plane wave $E_x = 36 \sin(1.20 \times 10^7 z - 3.6 \times 10^{15} t) V/m$. The average intensity of the beam will be

 $(1) 0.86W / m^2$

2 8979411146

 $(3) 3.44 W / m^2$ $(4) 6.88 W / m^2$

info@meritroot.com

35. In a parallel plate capacitor the separation between plates is 3x. This separation is filled by two layers of dielectrics, in which one layer has thickness x and dielectric constant 3k, the other layer is of thickness 2x and dielectric constant 5k. If the plates of the capacitor are connected to a battery, then the ratio of potential difference across the dielectric layers is

(1)
$$\frac{2}{3}$$
 (2) $\frac{5}{6}$ (3) $\frac{4}{5}$ (4) $\frac{3}{4}$
SECTION-B

 $(2)1.72W/m^2$

36. A non-isotropic solid metal cube has coefficients of linear expansion as 5×10^{-5} /° *C* along the X - axis and 5×10^{-6} /° *C* along the Y and the Z - axes. If coefficient of areal expansion of the solid is $K \times 10^{-6}$ /° *C*, then the value of 'K' is

www.meritroot.com

43. A tank having cross sectional area 64 A is filled with water to a height 4 h. If a small hole of cross sectional area A is made at the bottom of the tank, then the time taken by the water level to decrease from 16 h to 4 h is

(1)120
$$\sqrt{\frac{h}{g}}$$
 (2)115 $\sqrt{\frac{3h}{g}}$ (3)120 $\sqrt{\frac{h}{2g}}$ (4)128 $\sqrt{\frac{2h}{g}}$

- 44. Two conductors of capacity 8.4 mF each charged to potential 500V and -500V are joined by a conducting wire. If the mass of the wire 500 g and specific heat of the material is 0.1 cal/g/°C, the raise in the temperature of the wire is (1) $2.5^{\circ}C$ (2) $5^{\circ}C$ (3) $10^{\circ}C$ (4) $20^{\circ}C$
- 45. The earth's magnetic field is due to electrical currents produced by convective motion of metallic fluids (molten iron and nickel) in the outer core of the earth. This effect is known as (1) Tyndall's effect (2) Dynamo effect (3) Meissner effect (4) Peltier effect
- 46. Two identical wires are stretched by same tension of 100 N and each wire emits note of frequency 400 Hz. If the tension of any wire is increased by 2 N then beat frequency heard is (1) 1 Hz (2) 2 Hz (3) 3 Hz (4) 4 Hz
- 47. The equation of a stationary wave in a string is given by $y = 2A \sin kx \cdot \cos \omega t$. Maximum transverse speed of the particle is

1)
$$\frac{\omega}{k}$$
 2) $\frac{2A}{\omega}$ 3) $2kA$ 4) $2\omega A$

48. There exists uniform electric field \vec{E} as shown in the space. Four points A, B, C and D are also shown which are equidistant from origin. If V_A, V_B, VC and VD are their respective potentials then

	strong roots create merit
	(1) $\frac{CE^2}{9}$ 2) $\frac{2CE^2}{9}$ 3) $\frac{CE^2}{3}$ 4) $\frac{2CE}{3}$ PART-2: CHEMISTRY: SECTION-A
51.	The radius of n^{th} stationary orbit in hydrogen atom is given by the expression $R_n = R^0 \times n^2$, where R^0 is called Bohr's radius and its value is
52.	1) 5.29 Å 2) 52.9 Å 3) 0.529 Å 4) 0.0529 Å A molecule of organic compound contains atoms of Carbon, Hydrogen, Nitrogen and oxygen in the ratio 9:15:1:3. If there are 18 oxygen atoms per molecule then the molecular formula of the organic compound is
53.	1) $C_9H_{15}N_6O_{18}$ 2) $C_{27}H_{45}N_3O_{18}$ 3) $C_{54}H_{90}N_6O_{18}$ 4) $C_{54}H_{15}N_6O_{18}$ The set of Quantum numbers that is not possible for a d-electron 1) $n = 3; l = 2; m = 0; s = +1/2$ 2) $n = 2; l = 2; m = -2; s = +1/2$
54.	3) $n = 4; l = 2; m = +2; s = +1/2$ Which of the following metal sulphide has maximum solubility in water? 1) $FeS(K_{sp} = 11 \times 10^{-20})$ 2) $HgS(K_{sp} = 32 \times 10^{-54})$
55.	3) $ZnS(K_{sp} = 11 \times 10^{-22})$ Which of the following compound is/are polar? CCl_4 BCl ₃ NH ₃ SO ₂ C ₆ H ₆ H ₂ O
56.	(1) B, C & D (2) C, D and F (3) A, B and F (4) B & C Which one of the following is a correct set? 1) SF_4 , sp^3d , sea-saw geometry (2) I_3^- , sp, linear (4) B & C
57.	3) H_3O , sp^3 , angular 2 mol of N ₂ and 1 mol of He are introduced into a 10L evacuated closed container at 27°C. The pressure set up in the container will be 1) $\frac{4 \times 0.0821 \times 300}{10} atm$ 2) $\frac{2 \times 0.0821 \times 300}{10} atm$ 3) $\frac{1 \times 0.0821 \times 300}{10} atm$ 4) $\frac{3 \times 0.0821 \times 300}{10} atm$
58.	Which of the following is the correct order of acidic nature of oxides? 1) $SO_3 < Cl_2O_7 < Na_2O < MgO$ 2) $MgO < P_4O_{10} < SiO_2 < Cl_2O_7$
ę	🔰 8979411146 🌐 www.meritroot.com 🔀 info@meritroot.com

meritroot STRONG ROOTS CREATE MERIT 3) $Na_2O < Al_2O_3 < P_4O_{10} < SO_3$ 4) $Cl_2O_7 < SO_3 < P_4O_{10} < SiO_2$ The electron affinity values of four successive elements of third period A, B, C and D are 59. respectively -135, -60, -200 and -348 kJ mol⁻¹. The outer electronic configuration of element B is 1) $3s^2 3p^5$ 2) $3s^2 3p^3$ 3) $3s^2 3p^4$ 4) $3s^2 3p^2$ 60. Incorrect statement is (1) The electropositive character of alkali metals increases with increase in atomic number (2) Lithium is the hardest metal of IA group (3) Alkali metals are strong Oxidising agents (4) All alkali metals show colour in the flame test 61. In which of the following reaction H2O2 neither acts as oxidising agent nor reducing agent? 1) $Cr_2O_7^{2-} + H^+ + H_2O_2 \rightarrow$ 2) $PbS + H_2O_2 \rightarrow$ 4) $KI + H_2O_2 \rightarrow$ 3) $NaOH + H_2O_2 \rightarrow$ 62. Incorrect statement in the following is (1) Order of melting points is B>Al>Tl >In>Ga (2) Order of boiling point is B>Al>Ga>In>Tl (3) Borozole $(B_3N_3H_6)$ is called inorganic benzene (4) Oxides of boron are amphoteric in nature 63. Ingredients of Portland cement are (1) Dicalcium silicate, tricalcium silicate, tricalcium aluminate (2) Dialuminium silicate, trialuminium silicate, dicalcium silicate (3) Dicalcium silicate, tricalcium aluminate, zinc sulphate (4) Baking soda, limestone, iron oxide 64. Which statement is incorrect in the following? (1) CCl_{4} does not undergo hydrolysis as Carbon has no vacant d – orbitals (2) Except Pb, all IVA group elements show catenation property. (3) Graphite acts as a lubricant due to layer lattice structure (4) Pb^{+2} is less stable than Pb^{+4} 65. Read the following statements A. Gabriel phthalimide synthesis is used to prepare all 1^o amines B. $C_6H_5Cl \xrightarrow{Na} C_6H_5 - C_6H_5$ is known as wurtz reaction C. In S_N^1 mechanism there is more inversion than retention leading to partial racemization D. All aldehydes give red precipitate with Fehling's solution E. Reactivity order of alkyl halides towards SN^2 reaction is $1^0 > 2^0 > 3^0$ Number of correct statements among these (3) 5 (1) 2(2)4(4) 366. LIST -1(Pollutant) LIST - 2(Effect)A) $SO_4^{-2} > 550$ ppm 1) causes disease blue baby syndrome B) $NO_{3}^{-1} > 50$ ppm 2) Damage to kidney, liver, reproduction system C) Lead and Hg 3) Eutrophication of the pond D) PO_{4}^{-3} 4) Causes laxative effect 5) fluorosis 8979411146 www.meritroot.com info@meritroot.com

meritroo STRONG ROOTS CREATE MERIT 3) XeO_3 4) XeO_2F_2 1) $XeOF_{A}$ 2) XeO_{4} 82. Statement – I: F₂is better oxidising agent than Cl₂ Statement - II:HI is strongest acid and strongest reducing agent among hydrides of VIIA (1) Statement – I & II are correct (2) Statement – I & II are incorrect (3) Statement – I is correct but statement – II is incorrect (4) Statement – I is incorrect but statement – II is correct 83. The gold number of Gelatin, haemoglobin and sodium acetate are 0.005, 0.05 and 0.7 respectively. The protective actions will be in order: (1) Gelatin< haemoglobin < sodium acetate (2) Haemoglobin >Gelatin < sodium acetate (3) Gelatin> haemoglobin > sodium acetate (4) Sodium acetate >Gelatin> haemoglobin 84. In which pair, both ions are coloured in aqueous medium 4) Cu^+, Mn^{+2} 1) Sc^{+3} , Zn^{+2} 2) Cu^{+2} , Ti^{+4} 3) Ti^{+3} , Co^{+3} Which of the following detergent is used as germicide? 85. (1) Cetyltrimethyl ammonium bromide (2) p-dodecylbenzenesulphonate (3) Sodium lauryl sulphonate (4) Butylated hydroxy toluene SECTION-B 86. The limiting molar conductivities (Λ^0) for NaCl, KBr and KCl are 126, 152 and 150 S. cm2mol⁻ respectively. Then Λ^0 for NaBr is 2) $302 S cm^2 mol^{-1}$ 3) $278 S cm^2 mol^{-1}$ 4) $176 S cm^2 mol^{-1}$ 1) $128 S cm^2 mol^{-1}$ 87. Schottky defect causes (3) No change in the density of solid Which of the following (2) Decrease in the density of solid (4) Changes stoichemistry 88. Which of the following complex and its structure not correctly matched 1) $[NiCl_4]^{2^-}$, tetrahedral 2) $[Ni(CO)_4]$, square planar 3) $[Ni(CN)_4]^{-2}$, square planar 4) $[Cu(NH_3)_4]^{+2}$, square planar 89. Which of the following is incorrect? (1) In elastomers, polymer chains are held together by weak vanderwaals forces and few cross links are introduced between the chains (2) Cross linked polymers have strong covalent bonds within the linear polymeric chains (3) Fibres have crystalline nature (4) Natural rubber has coiled structure 90. Which of the following conversion can be brought about under Wolff – Kishner reduction? (1) Benzaldehyde to benzyl alcohol (2) Cyclohexanol to cyclohexane (3) Cyclohexanone to cyclohexanol (4) Cyclohexanone to cyclohexan (3) Cyclohexanone to cyclohexanol (4) Cyclohexanone to cyclohexane 91. Correct order of basic nature of the following species 2 8979411146 www.meritroot.com info@meritroot.com

108.	How many genetically different gametes ca assuming they are independently assorting?	n be made by an individual of genotype AaBbccDDEe,					
	1) 3 2) 5 3) 8	4) 32					
109.	Red rot of sugarcane is caused by						
	1) Colletotrichum falcatum	2) Peronospora					
	3) Xanthomonas oryzae	4) Dreschlera oryzae					
110.	<i>M.incognitia</i> affectsof tobacco plant						
	1) Fruit 2) Seed	3) Root 4) Bud					
111.	Lichens are the major pollution indicators of	of					
	1) SO ₂ in air 2) NO ₂ in air	3) Mercury in water 4) CO in air					
112.	Bryophytes have all the following character	r <mark>ist</mark> ic except:					
	1) Multicellularity	2) Lignified vascular tissues					
	3) Parenchyma	4) A reduced, dependent sporophyte					
113.	The following is the biochemical pathway f	for purple pigment production in flowers of sweet pea:					
	Colorless precursor 1 $\xrightarrow{AlleleA}$ Colorless precursor 1	recursor 2 $\xrightarrow{AlleleB}$ Purple pigments. Recessive mutation					
	of either gene A or B leads to the formation	of white flowers. A cross is made between two parents					
	with the genotype: AaBb \times aabb. Considering	ng that the two genes are not linked, the phenotypes of					
	the expected progenies are						
	1) 9 purple : 7 white	2) 3 white : 1 purple					
	3) 1 purple : 1 white	4) 9 purple : 6 light purple : 1 white					
114.	Morgan carried out several dihybrid crosses	s in <i>Drosiphila</i> to study genes that were sex linked which					
	of the following is incorrect statement related to this?						
	1) genes for yellow body colour and white eye traits are present in female only						
	2) genes for body colour and eye colour did not segregate independently of each other and F ₂ ratio						
	deviated from 9:3:3:1						
	3) Genes for eye colour and wing size are present on x chromosome						
	4) Genes for body colour and eye colour are	e tightly linked					
115.	Heterospory is seen in one of the following	set of examples?					
	1) Lycopodium, Pteris	2) Equisetum, Adiantam					
	3) Psilotum, Lycopodium	4) Marsilea, Salvinia, Selaginella					
116.	The enzyme that joins the DNA strand duri	ng construction of recombinant DNA is					
	1) Polymerase 2) Lipase	3) Ligase 4) DNA gyrase					
117.	A nitrogen fixing cyanobacteria found in co	pralloid roots of Cycas revoluta is					
	1) Aulosira2) Anabaena	3) Scytonema4) Calothrix					
118.	A mechanism that can cause a gene to mov	e from one linkage group to another is					
	1) Crossing over 2) Inversion	3) Translocation 4) Duplication					
119.	Match the List – I (Scientists) with List II (theories) and select the correct answer using the codes					
	given below						

1) 3) 1) 2) 3) 4) Geo	a) Sutton Boveri b) Beadle Tatum c) Schleiden Schwan c) Schleiden Schwan c) Jacob Monad a- 1, b $-$ 3, c $-$ a $-$ 2, b $-$ 4, c $-$ cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	& and & & & & & & 4, d - 1 -1, d - inetoch of syna e chror moson sent in	1) (2) (3) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (One gene one- enzyme hypothesis Cell theory Chromosome theory of inheritance Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
1) 3) In 1) 2) 3) 4) Geo	Boveri Boveri Beadle Tatum Schleiden Schwan D Jacob Monad a-1, b-3, c-a-2, b-4, c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	and	2) 3) 4) 1 4) 1 2 3 nore 1 aptor natin ne wi	enzyme hypothesis Cell theory Chromosome theory of inheritance Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
1) 3) 4) Geo	b) Beadle Tatum c) Schleiden Schwan c) Schleiden Schwan c) Monad a-1, b-3, c-a-a-2, b-4, c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	and	2) 3) 4) 1 1 1 1 1 1 1 1 1 1 1 1 1	hypothesis Cell theory Chromosome theory of inheritance Lac operon model of gene regulation (2) $a - 2$ (4) $a - 3$ nelps in temal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
t (((((((((((((b) Beadle Tatum c) Schleiden Schwan c) Schleiden Schwan c) Jacob Monad a-1, b-3, c-a-a-2, b-4, c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	and 2 & 2 4, d – 2 - 1, d - inetoch of syna e chror moson sent in	2) 3) 4) 1 1 1 1 1 1 1 1 1 1 1 1 1	Cell theory Chromosome theory of inheritance Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ melps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
1) 3) In 1) 2) 3) 4) Ge	Tatum Schleiden Schwan Schwan Schwan Jacob Monad a-1, b-3, c-a-2, b-4, c-c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	& 4, d – 2 4, d – 2 - 1, d - inetoch of syna e chror moson sent in	3) (4) (1) 4) (1) 2 3 nore (aptor natin ne wi	Chromosome theory of inheritance Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in memal complex th spindle fibres	, b − 1, c − 3, d − , b − 1, c − 2, d −	4	
((((((((((((((())))))))))	c) Schleiden Schwan a) Jacob Monad a- 1, b $-$ 3, c $-$ a $-$ 2, b $-$ 4, c $-$ cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	& 4, d – 2 - 1, d – inetoch of syns e chror moson sent in	3) (1 1 4) 1 2 3 nore 1 aptor natin ne wi	Chromosome theory of inheritance Lac operon model of gene regulation (2) $a - 2$ (4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4 4	
1) 3) 1n 1) 2) 3) 4) 6	Schwan l) Jacob Monad a-1, b-3, c-a-2, b-4, c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	& 4, d – 2 - 1, d - inetoch of syna e chror moson sent in	4) 1 4) 1 2 3 nore 1 aptor natin ne wi	theory of inheritance Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
1) 3) In 1) 2) 3) 4) Ge	1) Jacob Monad a-1, b-3, c-a-2, b-4, c-cell division, kThe formationCondensing theAttaching chroCytokinesisene 'cry' is pressBacillus subtili	& 4, d – 2 - 1, d - inetoch of syns e chror moson sent in	4) 1 2 3 nore 1 aptor natin ne wi	inheritance Lac operon model of gene regulation (2) $a - 2$ (4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d -	4	
(1) 3) In 1) 2) 3) 4) Ge	1) Jacob Monad a-1, b-3, c-a-2, b-4, c-cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	& 4, d – 2 - 1, d - inetoch of syns e chror moson sent in	4) 1 2 3 nore 1 aptor natin ne wi	Lac operon model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in memal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4 4	
1) 3) In 1) 2) 3) 4) Ge	Monad a- 1, b – 3, c – a - 2, b – 4, c – cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	4, d – 2 - 1, d - inetoch of syna e chror moson sent in	4) 1 2 3 nore 1 aptor natin ne wi	model of gene regulation 2) $a - 2$ 4) $a - 3$ nelps in nemal complex th spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d -	4	
L 1) 3) In 1) 2) 3) 4) Ge	a- 1, b – 3, c – a – 2, b – 4, c – cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	4, d – 2 - 1, d - inetoch of syna e chror moson	2 3 nore 1 aptor natin ne wi	$\begin{array}{c} 2) a - 2 \\ 4) a - 3 \\ a$, b – 1, c – 3, d – , b – 1, c – 2, d -	4	
1) 3) In 1) 2) 3) 4) Ge	a-1, b-3, c- a-2, b-4, c- cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is press Bacillus subtili	4, d – 2 - 1, d - inetoch of syna e chror moson sent in	2 3 nore 1 aptor natin ne wi	2) $a - 2$ 4) $a - 3$ nelps in the spindle fibres	, b – 1, c – 3, d – , b – 1, c – 2, d –	4	
 3) In 1) 2) 3) 4) Get 1) 	a - 2, $b - 4$, $c - cell division$, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	- 1, d - inetoch of syna e chror moson sent in	3 nore l aptor natin ne wi	4) $a - 3$ nelps in memal complex th spindle fibres	, b − 1, c − 2, d -	4	
In 1) 2) 3) 4) Ge	cell division, k The formation Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	inetoch of syna e chror moson sent in	nore l aptor natin ne wi	nelps in nemal complex th spindle fibres			
1) 2) 3) 4) Ge	The formation Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	of syna e chror moson sent in	aptor natin ne wi	emal complex th spindle fibres			
2) 3) 4) Ge	Condensing the Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	e chror moson sent in	natin ne wi	th spindle fibres			
3) 4) Ge	Attaching chro Cytokinesis ene 'cry' is pres Bacillus subtili	moson sent in	ne wi	<mark>th spin</mark> dle f <mark>ibre</mark> s	5		
4) Ge	Cytokinesis ene 'cry' is <mark>pr</mark> es Bacillus subtili	ent in					
G	ene 'cry' is <mark>pr</mark> es Bacillus subtili	sent in					
1\	Bacillus subtili						
1) Bacillus subtilis 2) Bacillus megasporium							
3)	Bacillus amylo	liquefa	acien	s 4) Bacil	llus thuringiensis		
Two pure lines of corn have mean cob length of 9 and 3 inches, respectively. The polygenes involved in this trait exhibit additive gene action. Crossing these two lines is expected to produce a							y. The polygenes
							pr
1)	12.0	2) 7.5		3) 6.0	4) 2.75	
In	a cell major pro	oportio	on of	RNA is found in			
1) D	Nucleolus	2)) Plas	stids	3) Mitochondria	4) R1b0	somes
Repeated chromatid replication and non segregation of daughter chromatids leads to the form						s leads to the formation of	
2) Longruph chromosome					nosome		
3) ID	3) Lamprush chromosome (4) Leptotene chromosome						
1)	Plasmids containing replication origin sequences of 2 different hosts are						
1) 2)	Expression voc	vectors	•	S I De	4) Integrating vo	otors	
3) W	Thich chemicals	diven	helov	y would you fin	d in phospholini	19	
1)	C H O N P	$\frac{g}{2}$	C F	$\mathbf{J} \mathbf{O} \mathbf{F}_{\mathbf{P}}$	$3 C H O M_{\sigma}$		() C H O Mn
ים ים	C, Π, O, Π, I	Lis m) C, I ultifu	nctional enzyme	because it prop	otes	+) C, II, O, Will
I	Polymerisation	reactio	ununu m	inetional enzyme	because it profi	0105	
I. POlymerisation reaction II. Removal of nucleotides from 3' terminus in DNA							
11. III	II. Removal of nucleotides from 5' terminus in DNA III. Removal of nucleotides from 5' terminus in DNA						
	III. Kemoval of nucleonaes from 5 lerminus in DNA IV Joining of ends of DNA fragments						
1)	I & IV are corr	ect		2) II &	IV are correct		
3)	III & IV are con	rrect		2) II & 4) I II 2	W III are correct		
W	hich of the foll	owing	is no	t a component of	f mitochondrial e	lectron transr	ort?
**	men or the rolle	5 1115	15 110	i a component 0		iceu on u unop	

3) Cytochrome c

4) Cytochrome a₃

2) Cytochrome b₆

1) Ubiquinone

129. Which of the following is caused due to proteinaceous infectious agent? 1) Potato spindle tuber disease 2) Anthrax 3) Cr-Jacob disease 4) Mosaic disease 130. The bonding of two amino acid molecules to form a larger molecule requires 1) The release of a water molecule 2) The release of a carbon dioxide molecule 3) The addition of a nitrogen atom 4) The addition of a water molecule 131. When hydrogen ions are pumped out of the mitochondrial matrix, across the inner mitochondrial membrane, and into the space between the inner and outer membranes, the result is 1) Damage to the mitochondrion 2) The reduction of NAD 3) The restoration of the $Na^+ - K^+$ balance across the membrane 4) The creation of a proton gradient 132. Match the following Bt cotton 1) I) Improved shelf life 2) Flavr Savr tomato Improved nutritional quality II) III) Roundup ready soyabean 3) Pest resistance Golden yellow rice 4) Herbicide tolerance IV) 1) I - 4, II - 2, III - 1, IV - 32) I - 3, II - 1, III - 4, IV - 23) I - 4, II - 2, III - 3, IV - 14) I - 3, II - 2, III - 1, IV - 4133. The function of water in photosynthesis is to 1) Combine with CO_2 2) Absorb light energy 3) Supply electrons in the light –dependent reactions 4) Transport H⁺ ions in the light – independent (dark) reactions If a segment of DNA is 5'-TACGATTAG-3', the RNA that results from the transcription of this 134. segment will be 1) 3'-*TACGATTAU* -5' 2) 3' - ATGCTAATA - 5'4) 3' - AUGCUAAUC - 5'3) 3'-UACGAUUAG-5'135. Electron acceptor during glycolysis 1) FAD 2) FMN 3) NADH₂ 4) NAD SECTION-B 136. Zeatin is a naturally occurring 2) Gibberellin 3) Auxin 4) Abscisic acid 1) Cytokinin 137. Which of the following RNA serves as adapter molecule during protein synthesis? 1) rRNA 2) mRNA 3) tRNA 4) hnRNA 8979411146 www.meritroot.com info@meritroot.com

138. List I consists of some terms and List II includes their corresponding definitions. Select the code showing correct matching.

	List – I(Terms)	List – II(Definitions)			
I)	Photoxidation	1)	Influence of duration of day and night on flowering of plants		
II)	Photoperiodism	2)	Splitting of water molecule by light		
III)	Photolysis	3)	Damage of cells under high intensity of light		
IV)	Photorespiration	4)	Respiration in chloroplasts during day time		

1) I - 4, II - 3, III - 4, IV - 22) I - 3, II - 4, III - 3, IV - 13) I - 2, II - 1, III - 4, IV - 34) I - 3, II - 1, III - 2, IV - 4

139. List I consists of some terms and List II includes their corresponding definitions. Select the code showing correct matching.

List – I(Terms)			List – II(Definitions)					
I)	Photoxidation	1)	Influence of duration of day and night of	on flowering of plants				
II)	Photoperiodism	2)	Splitting of water molecule by light					
III)	Photolysis	3)	Damage of cells under high intensity of	<mark>f l</mark> ight				
IV)	Photorespiration	4)	Respiration in chloroplasts during day t	time				
	1) $I - 1$, $II - 2$, $III - 3$, $IV - 4$							
	2) $I - 2$, $II - 1$, $III - 4$, $IV - 3$							
	3) $I - 3$, $II - 4$, $III - 2$, $IV - 1$							
	4) $I - 4$, $II - 1$, $III - 2$, $IV - 3$							
140.	In lac operon, the gene which encodes the repressor protein is							
	1) 'z' 2) 'a' 3) 'o' 4) 'i'							
141.	The following statements have been proposed for plant vegetative development:							
	A) Lateral roots develop from epidermal cells							
	B) Axillary meristem develops from shoot apical meristem during differentiation of leaf primordia							
	C) Root cap is made up of dead cells							
	D) Lateral meristems and cylindrical meristems found in roots and shoots results in secondary							
	growth							
	Which of the above statements are true?							
	1) (A) and (B) 2	2) (B) a	nd (D) 3) (A), (B) and (D)	4) (C) and (D)				
142.	During reproductive developm	ent in p	lants					
	A) Male and female gamete are	e produ	ced as a result of two mitotic divisions at	fter meiosis				
	B) Generative cell form two m	ale gan	netes					
🔇 8979411146 🌐 www.meritroot.com 🎽 info@meritroot.com								

- 1) Post anal tail 2) Pharyngeal gill slits
- 3) Dorsal hollow nerve chord 4) Calcareous ossicles

154. Which type of tissue correctly matches with its location?

154.	which type of tissue correct	iy matches with its it						
	Tissue	Location						
	1) Skeletal muscle	Blood vessels						
	2) Dense connective tissue	Tendons						
	3) Compound epithelium	Lining of stomach						
	4) Simple epithelium	Dry surface of skin						
155								
155.	which of the following feature is not present in <i>Periplaneta americana</i>							
156	Which of the following gue	de the opening of ste	uscular gizzard	4) Supra (besophagear gangna			
130.	which of the following guards the opening of stomach into the duodenum?							
157	In the stomach, the factor of	sontial for the absorn	tion of vitamin B	(1 4) Fylon	d by the			
137.	1) Oxyntic cells 2) Ch	inf calls 3) (collet cells		(1) Pentic cells			
158	The delivery of oxygen to ti	sue depends on all e	vcent		4) I optic cells			
150.	1) Haemoglobin amount	2) Cardiac	output					
	3) Ventilation rate	4) Partial p	essure of nitroge	n				
159	Volume of air that will remain	in in the lungs after a	normal expiration	on is repres	ented as			
1071	1) $VC = TV + IRV + ERV$	2) FRC = E	RV + RV					
	3) $IC = TV + IRV$	4) TLC = V	C + RV					
160.	Difficulty in breathing cause	ng wheezing due to i	nflammation of b	ronchi and	bronchioles is the			
	symptom of	0 0						
	1) Asthma 2) En	physema 3) P	neumonia	4)	Asbestosis			
161.	In mammals, which blood vessel would normally carry richest amount of nutrients							
	1) Hepatic vein 2) He	patic artery 3) H	epatic portal veir	n 4)	Dorsal aorta			
162.	Maximum amount of blood	transferred from atria	to ventricles in a	a cardiac cy	v <mark>cle</mark> is during			
	1) Atrial systole 2) Joi	nt diastole 3) V	<mark>ent</mark> ricular systole	e 4)	Joint systole			
163.	The macula densa cells are	nodified tubular epit	nelial cells of					
	1) DCT 2) PC	T 3) L	oop of Henle	4)	Collecting duct			
164.	Several hormones regulate t	he tubular reabsorption	on of water and el	lectrolytes	at different sites in the			
	nephron. Which of the following combination is correct?							
	1) ADH in PCT	2) Aldoster	one in DCT					
1.65	3) ANP in loop of Henle	4) PTH in F	Bowman's capsul	e				
165.	Which of the following com	ponent is absent in v	sceral muscles?	4	G			
100	1) Myosin 2) Ac	$\sin 3)$ S	arcosome	4)	Sarcomere			
166.	Nost diffusible ion when the 1	e axonal membrane o	ra neuron is at re	est 1s				
	1) Na 2) M	g 3) I		4) <i>Cl</i>	_			
167.	The visible coloured portion	of the human eye is	involved in the re	egulation of	Í			
	1) Lacrimal secretion	2) Diameter	ot pupil					
1.00	3) Size of the lens	4) Moveme	nt of eye ball					
168.	Which of the following hori	none is an amino acid	1 derivative?		1			
	1) Epinephrine 2) Pro	olactin 3) P	rogesterone	4) Thyroc	alcitonin			

169. Which of the following pair of hormones are antagonistic to each other in their actions?

meritroo STRONG ROOTS CREATE MERIT 1) Adrenaline-Noradrenaline 2) Vasopressin-Aldosterone 3) Insulin-Glucagon 4) Thyrotropin-Thyroxine 170. Spermatogenesis starts at the age of puberty due to significant increase in secretion of 2) hCG 1) GHRH 3) GnIH 4) GnRH 171. Ovulation in a women with 28-day menstrual cycle occurs at 1) 14 days prior to menstruation 2) Just after corpus luteum formation 4) 14 days prior to beginning of secretory phase 3) Just before LH surge 172. Seminal plasma in human males is rich in 1) Glucose and Potassium 2) Maltose and Zinc 3) Fructose and Calcium 4) Sucrose and Sodium 173. Which of the following is a finger-like structure and lies at the upper junction of two labia minora above urethral opening? 1) Mons pubis 2) Clitoris 3) Hymen 4) Fourchette 174. Find the correct pair regarding contraceptive method and its action 1) Tubectomy Prevent Ovulation 2) Contraceptive pill Retard entry of sperms 3) Condoms Prevent menstruation 4) Coitus interruptus Prevent spermatogenesis The test tube baby program employs which one of the following techniques? 175. 2) IUI 3) GIFT 4) ZIFT 1) AI (IVI) 176. According to Oparin, which one of the following was not present in the primitive atmosphere 3) Methane 4) Hydrogen 1) Ammonia 2) Oxygen Diversity in the type of beaks of finches adapted to different feeding habits on the Galapagos islands 177. provides evidence for 1) Panspermia 2) Special creation 3) Natural selection 4) Spontaneous generation Which of the following statement is wrong regarding the eye of octopus and of mammals? 178. 1) They are result of convergent evolution 2) They indicate different ancestry 3) They are analogous structures 4) They are anatomically similar 179. Which of the following sets of protozoans causes diseases in humans 1) Entamoeba histolytica and Plasmodium vivax 2) Salmonella typhi and Streptococcus pneumoniae 3) Ascaris lumbricoides and Wuchereria malayi 4) *Trichophyton* and *Epidermophyton* 180. The injection of preformed antibodies against snake venom is a type of 1) Active immunity 2) Innate immunity 3) Passive immunity 4) Auto immunity 181. What is the name of chemical structure given below and its effect

2 8979411146

www.meritroot.com

info@meritroot.com